APM OpenIR
Local uniqueness of m-bubbling sequences for the Gel'fand equation
Bartolucci, Daniele1; Jevnikar, Aleks2; Lee, Youngae3; Yang, Wen4
2019-06-03
Source PublicationCOMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
ISSN0360-5302
Volume44Issue:6Pages:447-466
AbstractWe consider the Gel'fand problem, [GRAPHICS] where h is a nonnegative function in Under suitable assumptions on h and omega, we prove the local uniqueness of bubbling solutions for any small enough.
KeywordBlow up solutions Gel'fand equation local uniqueness
Funding OrganizationFIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC
DOI10.1080/03605302.2019.1581801
WOS KeywordASYMPTOTIC NON-DEGENERACY ; SINGULAR LIMITS ; UP SOLUTIONS ; BLOW
Language英语
Funding ProjectFIRB project "Analysis and Beyond" ; PRIN project 2012[ERC PE1_11] ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata")[ERC PE1_11] ; NSFC[11801550]
Funding OrganizationFIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC ; FIRB project "Analysis and Beyond" ; FIRB project "Analysis and Beyond" ; PRIN project 2012 ; PRIN project 2012 ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; Consolidate the Foundations project 2015 (Univ. of Rome "Tor Vergata") ; NSFC ; NSFC
WOS Research AreaMathematics
WOS SubjectMathematics, Applied ; Mathematics
WOS IDWOS:000466781000001
PublisherTAYLOR & FRANCIS INC
Citation statistics
Cited Times:3[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.apm.ac.cn/handle/112942/13720
Collection中国科学院武汉物理与数学研究所
Corresponding AuthorJevnikar, Aleks
Affiliation1.Univ Roma Tor Vergata, Dept Math, Rome, Italy
2.Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
3.Kyungpook Natl Univ, Teachers Coll, Dept Math Educ, Daegu, South Korea
4.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan, Hubei, Peoples R China
Recommended Citation
GB/T 7714
Bartolucci, Daniele,Jevnikar, Aleks,Lee, Youngae,et al. Local uniqueness of m-bubbling sequences for the Gel'fand equation[J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,2019,44(6):447-466.
APA Bartolucci, Daniele,Jevnikar, Aleks,Lee, Youngae,&Yang, Wen.(2019).Local uniqueness of m-bubbling sequences for the Gel'fand equation.COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS,44(6),447-466.
MLA Bartolucci, Daniele,et al."Local uniqueness of m-bubbling sequences for the Gel'fand equation".COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 44.6(2019):447-466.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Bartolucci, Daniele]'s Articles
[Jevnikar, Aleks]'s Articles
[Lee, Youngae]'s Articles
Baidu academic
Similar articles in Baidu academic
[Bartolucci, Daniele]'s Articles
[Jevnikar, Aleks]'s Articles
[Lee, Youngae]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Bartolucci, Daniele]'s Articles
[Jevnikar, Aleks]'s Articles
[Lee, Youngae]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.